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EDUCATIONAL EXPERIENCES ABOUT USING 
DIFFERENT COMPUTER PROGRAMS IN CALCULUS 

COURSES 

Anna Takács Klingné1 

 

Abstract: Traditionally the mathematical Calculus course starts from the first semester at the 
University of Kaposvár.  On the basis of our experiences it is too difficult or abstract for our 
students to pick up the elements of this subject. Among others this motivated us to use 
computerized methods for demonstrations, visualization and better understanding of the concepts 
(monotonity, extreme values, etc.) of the curriculum. We decided for programs Excel, Geogebra 
and Euler3D as these are available and easy to use. Students draw graphs of functions and 
sequences with Excel or/and Geogebra and recognize their properties, and also use Excel Solver 
and Euler3d programs to solve and demonstrate linear programming problems. Either the graphic 
representing of functions or the visualization of linear programming exercises can be solved easily 
with the help of computer programs unlike the paper pencil method. During the resolving of 
analytical exercises the emphasis goes from the symbolic level that was defined by Bruner to the 
representational level of the demonstration or graphs. In this paper we give examples from 
students’ tasks and opinions.  
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1. Introduction  
Our experiences show that teaching-learning process is damaged on the different levels of 
mathematics education. In my opinion the problem is that in teaching-learning process the foundations 
are left for higher education, but this way the acquisition of other subjects is hindered too, because the 
“laying of foundations” is not finished yet. How can we make up for these difficulties in higher 
education? This topic is important for our students, because of Calculus is a basic subject and they 
have to get acquainted with functional operations in order to be able to describe economic processes 
with the help of functions. I am looking for computer methods and programs for teaching analysis, 
which are very useful in drawing graphs of functions, recognizing their properties. 
Before starting their studies, students are tested in mathematics. Questions in the test are about 
number- and function-abstraction and about model creation. We reveal their deficiencies based on 
their solutions.  
We offer an optional subject to the students. It is called Methods of Mathematics Using the Computer. 
This course goes in parallel with Mathematics I (Calculus). 
The subject has a threefold aim: 
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- the development and conditioning of the bases; 
- to link it closely with higher mathematics; 
- to link it with the use of computers. 

Cognitive mathematics learning objectives were used during the training course (Bloom,1972; Varga 
1973):  

- Understanding (relationship insight, understanding the statement, repetition, thought up, the 
transition between the use of representations) 

- Knowledge-action services (routine, solution algorithms, skills) 
- Construction (problem formulation, generalization, each possible solution)  
- Assessment (whether the statement is true, mutatis mutandis, whether the data are sufficient; 

thought fairness, rationality, practicality) 

I have been dealing with Bruner’s representational theory and I try to adapt it to my research. Bruner 
examined how people represent and store the information arriving from the external world. Almost 
thirty years ago, when current graphic computer environments were not even a dream, Bruner (1966) 
distinguished three different modes of mental representation – the sensori-motor, the iconic and the 
symbolic. In his essay “Patterns of Growth” he wrote:  

What does it mean to translate experience into a model of the world. Let me suggest there 
are probably three ways in which human beings accomplish this feat. The first is through 
action. […] There is a second system of representation that depends upon visual or other 
sensory organization and upon the use of summarizing images. […] 

We have come to talk about the first form of representation as enactive, the second is 
iconic. […] Finally, there is a representation in words or language. Its hallmark is that it 
is symbolic in nature. Bruner, 1966, pp. 10–11. 

The three representation methods take part in each phase of the teaching 
process. To my mind the visual education is very important, that’s why I 
try to provide everyday, lifelike illustrations to help the acquisition of the 
material. 

Figure 1. Bruner’s three modes of representation 

 

Although this claim is far-reaching, it has proved to be able to explain certain sophisticated logical 
ideas in, say, a simple visual form. However, different representations use different forms of 
knowledge which has advantages and hidden difficulties. In figure 1 the bold lines show Bruner’s 
proposed sequence of growth, together with other connections between the systems. For instance, the 
symbolic system passes written communication to the enactive system for writing and typing, the 
iconic system passes its drawing actions to the enactive system and there are many links between 
iconic and symbolic in mathematics, for example between symbolic functions and graphs (Tall, 1994). 
There is flexibility between the different levels: the easier the transition between the levels, the more 
effective the representational thinking and problem-solving are.  The use of computers can improve 
flexibility in the transition between the representation levels. Computer programs help students to 
draw the graph of a function. We had to look for programs which are available for everyone, so our 
choice fell on Excel and GeoGebra. 

 

 

Figure 2. Using the computer to provide visuo-spatial and proceptual support for various 
levels of mathematical thinking (Tall,1994) 
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2. Drawing the graph of a function using Excel  
In order to be able to draw the graph of a function, it is necessary to find the extreme value points, 
monotonic sections, the curvature of the function, and the inflection points by a means of analysis. 
Students are able to find these characteristics and to determine the part of the domain of the function 
where it should be plotted. However, it still presents difficulties for them to draw the graph of the 
function, that’s why I started to look for programs that help representation. 

For example one task was: 

Determine the first and second derivative. They have to determine the intervals where the 
characteristics of the function change: 

 
We define the points necessary for drawing the graph of the function with the means of mathematical 
analysis: 

- zero location: ( ) 0=xf  ⇒  x=0    

- possible locations of extreme values: ( ) 0=′ xf   ( )
1
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The sign table made by Excel: The received zero points determine the intervals where the sign of the 
first derivative is to be investigated. 

Figure 3. Sign of the first derivative and Excel table 

 

 

 

 

 

 

 

 

 

 

It would be sufficient to substitute only one element in each interval because of the continuity of the 
derivative function. The reason why there are so many elements substituted is that students should 
actually verify the correctness of certain elements of the sign board. 

The second derivative of the function is to be determined. 
- possible locations of  the inflection point :      ( ) 0=′′ xf    

- in a further simplified form:  ( )
1
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- the zero locations of the second derivative:  
2
3

2,1 ±=x  

The second derivative signs table shows the curvature of the original function. 

interval 
 
 

-0,9 -0,10147 
-0,8 -0,05431 
-0,7 0,004507 
-0,6 0,071865 
-0,5 0,143252 
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-0,2 0,325178 
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Figure 4. Sign of the second derivative and Excel table 

Most students are able to find the elementary characteristics of a 
function. However, only few if any are able to illustrate those 
characteristics which can be obtained with the help of differential 
calculus. Excel provided help in this problem. I discovered that 
students enjoyed using the computer for checking, after we 
had solved the tasks in a traditional way. 

 
 

Figure 5. Graph of the f(x) function in Excel 

 

3. GeoGebra in the education of analysis 

It was this semester when I used GeoGebra for the first time at Calculus class work. Why GeoGebra? 
We looked for such a program which is free of charge and which can be downloaded from Internet. 
GeoGebra has an easy-to-use interface, built-in mathematical commands, so it did not cause any 
problems to use. 

3.1. Function Analysis 

Let’s see the function defined by the following formula. 

( ) xe
xxxf 12 −+

=  

We define the points necessary for drawing the graph of the function with the means of mathematical 
analysis: 

- zero location : ( ) 0=xf   ⇒   2
51      01 2,1

2 ±−
=⇒=−+ xxx

 

- possible locations of extreme values: ( ) 0=′ xf   ⇒   ( ) ( ) ( )
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How does GeoGebra help? 

 
 

 

interval 
 
 

-1,3 -0,06707 

-1,2 0,025102 

-0,1 0,217075 
0 0 

0,1 -0,21707 
1,2 -0,0251 
1,3 0,067066 

( )xf ′′  ( )xf  interval 

- ∩  

2
3

−<x  

0 inflection 
point 

2
3

−=x  

+ ∪  
0

2
3

<<− x  

0 inflection 
point 

0=x  

- ∩  

2
30 << x  

0 inflection 
point 

2
3

=x  

+ ∪  
x<

2
3  

-0,2

-0,15

-0,1

-0,05

0

0,05

0,1

0,15

0,2

-2 -1,6 -1,2 -0,8 -0,4 0 0,4 0,8 1,2 1,6 2

The relation is as 

follows: ( )2xe  

Free objects= szabad alakzatok 

Dependent objects= függő alakzatok 

( )xf ′′



Educational experiences about using different computer programs in calculus courses 

 
Volum 1 number 2 5

In the algebraic box you can check if the derivation is correct, with the help of GeoGebra we get the 
non-simplified derivative function. 

- in a further simplified form: 
( ) xe

xxxf 22 ++−
=′

 ,  

- the zero locations of the first derivative: 
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The sign chart can be checked knowing the graphs of the functions. 

- possible locations of  the inflection point : ( ) 0=′′ xf   ⇒   
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On the one hand, GeoGebra defines the second derivative from the non-simplified form of the first 
one, which makes the algebraic form of the derivative function more complex in the case of a fraction. 
On the other hand, if we want to ask our students only about derivation and its steps without the 
simplified forms, they can profit from it in the checking process.  

 

The function and its derivatives are represented in the same coordinate system, which helps students to 
deepen their knowledge. The sign of the first derivative function indicates if the original function is 
increasing or decreasing and gives the possible locations of extreme values. The sign of the second 
derivative function shows the curvature of the original function and the position of inflection. 
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Students can check the sign chart with the comparison of the second derivative of the function drawn 
by GeoGebra and the graph of the original function.   

4. Conclusion 
Students in economics have to know the traditional way to learn the processes of the bases of 
Calculus. Excel and GeoGebra programs are a supplement to this, and help verification and 
illustration. Our experience shows that students have the most difficulties with drawing the graph of a 
function. This is where computers can help. 

Here is an opinion of a student: 
For the solution of the two tasks we used Excel and GeoGebra programs, and the use of GeoGebra 
was found much faster and easier. On the one hand, it is not necessary to specify the intervals; on the 
other hand, it is not necessary to enter values. In addition, typing formulae is simpler. The 
representation and use of the functions show much better properties in GeoGebra, and they are more 
visible as well. 
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